NEARSHORE MAPPING OF THE SHOREFACE REGION: LINKING THE INNER SHELF & BEACH SYSTEMS IN SOUTH CAROLINA AND NEW YORK

Paul T. Gayes, Clay McCoy Rich Viso, Jenna Hill Coastal Carolina University Bill Schwab, Wayne Baldwin Cheryl Hapke, Jane Denny, Walter Barnhardt US Geological Survey

Neal Driscoll Scripps Institution of Oceanography Sara Brown US Army Corps of Engineers

Fire Island New York, Day 3 of Sept 2009 Field Work

CCU BERM System Fire Island National Seashore, NY Sept 2007

Reasons to Avoid Shallow Water Mapping

- Small Boat Day Ops
 - Limited Weather Windows
 - Inefficient Survey Days
- Shallow Water
 - Limited swath coverage
 - Acoustically Difficult Environment
 - Waves, turbidity, salinity

Reasons NOT to Avoid Shallow Water Mapping

Dynamic Nearshore and Inlet Areas Focus of Pressing Societal Issues

Beach Erosion, Inlets, Inlet By-Passing, Sediment Budgets, Habitats, Storm Impacts/Recovery

Recent Shallow Mapping Applications

USGS SC Coastal Erosion Program

Regional Geologic Framework / Coastal Behavior / Modeling

USGS/NPS Fire Island Shoreface

Relationship of Shoreface Ridges and beach erosion patterns

USACOE - Regional Sediment Management

Sediment Budgets / Dispersal Pathways

USGS - SC Sea Grant SC Coastal Erosion Study

GOAL: To develop a complete understanding of the factors controlling sediment transport in order to predict coastal change.

GOAL: To link inner shelf mapping across to active beach system

Geologic Framework

Offshore

Side Scan Sonar
Interferometric Sonar
Chirp/uniboom
Surficial Sediment
Vibracores
Bottom Video

Onshore

Borings Ground Penetrating Radar

- Link Across the Shoreface
- Shoreline Change

BERM-Long Profiling
Historical Shoreline Change
Beach Cams
"SWASH" Surveys

- <u>Database Integration/Access</u>

 ARC-IMS-
- Process Studies

USGS

Coastal Carolina University
Scripps Inst. of Oceanography
College of Charleston
University of South Carolina
Georgia Tech
Skidaway Institute

Georgia Southern Univ.

Cooperative Agencies

MMS, USACE, SC DNR, SC OCRM, NOAA, Counties, Cities, Private Companies

Collaborating Institutions

Univ. S. Florida, Univ. Ill-Chicago, Woods Hole

GEOLOGIC FRAMEWORK

Overlapping Swaths

From Barnhardt et al, 2008, Coastal Change Along the Shore of Northeastern South Carolina: The South Carolina Coastal Erosion Study; U.S. Geological Survey Open-File Report 2008-1206

MAPPING

Sidescan Sonar Swath Bathymetry

Seisiffic Kerrection

Bottom Photography

Core and Grab
Samples

GEOLOGIC MAPS

Regional Framework of South Carolina's Grand Strand

USGS Long Bay Geophysical Tracklines > -7 meters depth

Regional USGS Map Products

Bathymetry

Side Scan Sonar Backscatter

Paleo-drainage

Regional USGS Interpreted Map Products

AFTER - Barnhardt et al, 2008, Coastal Change Along the Shore of Northeastern South Carolina: The South Carolina Coastal Erosion Study; U.S. Geological Survey Open-File Report 2008-1206

Applied Data Products

Surficial Sediment Thickness

Applications for Resource Management
Beach Nourishment Resources
Critical Habitat Areas
Baseline for Detailed Site Specific Studies

Core ID: NF00-A1-6

Shore-detached shoal

Shells near base of shoal 4810-4540 cal. yr BP

Regional Bottom Habitat Classification

Baseline for Detailed Site Specific Studies

AFTER- Denny, J.F., Baldwin, W.E., Schwab, W.C., Gayes, P.T., Morton, R and Driscoll, N.W., 2007, Modern Sediment Distribution on the inner shelf of South Carolina's Long Bay from Little River Inlet to Winyah Bay, Open File Report- US Geological Survey 2005-1345

Habitat Disturbance-Trawl Marks

SC Coastal Erosion Program

GOAL: Connect Across the Shoreface to the Active Beach System Area of Primary Concern to State and Local Resource Managers

Breakers

USGS Side Scan Sonar Mosaic

Connection across the shoreface to active beach Architecture of the Shoreface and Developing Unconformity Surface < -7m depth

50 FEET

From Barnhardt et al, 2008, Coastal Change Along the Shore of Northeastern South Carolina: The South Carolina Coastal Erosion Study; U.S. Geological Survey Open-File Report 2008-1206

Submarine Groundwater Discharge Marine Resistivity Studies

From- Viso, R., McCoy, C., Gayes, P.T., and Quafisi, D., Geological Controls on Submarine Groundwater Discharge in Long Bay, SC, Continental Shelf Research; Accepted September 2009

Connect Framework to Shoreline Change and Behavior Link to Process Studies

Complete Active Beach System Profiles

Sled Single Beam w/ RTK DGPS ATV

Statewide Dataset Establishes
Jurisdictional
Baseline in SC.

Defining Coastal Behavior

Flistorical Shoreline Change

BERM

Shoreline Erosion

Aerial and Truck/Boat Mounted LIDAR

BEACH CAM

Physical Processes

Folly Beach Sand Resources Study From Gayes, Schwab and Denny, 2003

Mis-Dumps identified acoustically at Charleston ODMDS From Gayes and Ojeda, 2000 and 2001

2007 Pilot Project

- •Detailed bathymetry 0-10 m for small stretch of Fire Island Shoreface
- •In context of broader regional efforts (USGS onshore and offshore)
- •Is there an expression of oblique sand ridges across the shoreface???

2007 Single Beam Pilot - National Park Service Cooperative Agreement H5040 04 0500 Task Agreement J1750 07 0047 2009 Multibeam/Single Beam Shoreface Test Areas - USGS Cooperative Agreement G09AC00484

Morphologic relationship between offshore ridges, nearshore bar and Shoreline Behavior
 Shelf - Beach Transition - Ridge vs. Non-Ridge Area

AFTER – Hapke et al., in press, A review of Sediment Budget Imbalances along Fire Island, New York: Can Nearshore Geologic Framework and Patterns of Shoreline Change Explain the Deficit?, Journal of Coastal Research

Beach Cam Jan-April 2008

John LaBold, Etinenne Larangot, and Allison Truhlar- Stony Brook RUE Project

US Army Corps of Engineers-Regional Sediment Management (RSM)

Detailed Comprehensive Baseline –WINYAH BAY ENTRANCE

Navigation Channel and AIWW

Fall 2009

Single Beam

Shoaling, Habitat and Bottom Boundary for Improved Flood Modeling of Waterway/River System

Obstructions/ Snags

RSM-Establish Reference Surface
Time Series in Key Locations
Integrate hydrodynamic modeling

Bedforms -Boundary Roughness

US Army Corps of Engineers-Regional Sediment Management (RSM) Detailed Comprehensive Baseline – CHARLESTON HARBOR

Single Beam

SUMMARY

Many Critical Resource Management Issues Are Located in Shallow Water Shallow Water Mapping Can be Completed but Can Also be Challenging

Maximize use of Platforms- Data Types
As Possible Continuous Coverages for Baseline
Seamless Across Beach to Traditional Subaerial Imagary/Mapping

Coastal Erosion Model Framework/Behavior/Process Modeling Regional Approach

Federal / Local Partnerships
Organizations such as USGS – Excellent Regional Sea Floor Mapping Capabilities
Very Shallow – Day Trips / Scheduling / Time Series
Can Benefit from Local/State Partners

BEACH CAM

